Thermal homogenization of lightweight concrete using mean field micromechanical models
Palavras-chave:
Micromecânica, homogeneização, concreto.
Resumo
Os modelos micromecânicos de campos médios são amplamente utilizados para a homogeneização de materiais heterogêneos com inclusões randômicas. O avanço da teoria da inclusão equivalente permitiu a determinação das propriedades físicas efetivas para diversos materiais compósitos. Com as propriedades de suas fases e as equações dos modelos propostos, pode-se realizar a homogeneização para a verificação com resultados experimentais. Este trabalho demonstra a obtenção das propriedades térmicas para aplicação na construção do concreto leve. Verifica-se que, com uma boa caracterização experimental das fases, é possível dispor de resultados analíticos que possibilitam um procedimento de escolha do percentual de inclusões no concreto, considerando a massa específica requerida e o desempenho térmico do material.Referências
ACI-213R-03. Guide for Structural Lightweight-Aggregate Concrete. American Concrete Institute. s.l. : Reported by ACI Committee, 2003.
ASADI, IMAN, et al. Thermal conductivity of concrete – A review. Journal of Building Engineering. 2018, pp. 81-93.Comprehensive Composite Materials. 2000, Vol. 4, pp. 25–45.
BENVENISTE, Y. A new approach to the application of Mori-Tanaka's theory in composite materials. ”Mechanics of materials. 2, 1987, Vol. 6, pp. 147-157.
CHEKAOUI, M and QU, J. Fundamentals of micromechanics of solids. New Jersey : John Wiley & Sons, 2006.
CHRISTENSEN, R. M. and LO, K. H. Solutions for effective shear properties in three phase sphere and cylinder models. Journal of the Mechanics and Physics of Solids. 4, Apr. 1979, Vol. 27, pp. 315-330.
ESHELBY, J. D. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the royal society of London. Series A. Mathematical and physical sciences. 1226, 1957., Vol. 241, pp. 376-396.
HATTA, H. and TAYA, M. Equivalent inclusion method fot steady state heat conduction in composites. 7, 1986, Int. J. Eng.Sci., Vol. 24, pp. 1159-1172.
13 Educte, Brasil, Maceió, ISSN XXXX-XXXX, v. XX, nº xx, ano xx, p. x a x.
LI, YAQIANG, LI, YUE and WANG, R. Quantitative evaluation of elastic modulus of concrete with nanoidentation and homogenization method. Construction and Building Materials. Apr 2019., Vol. 212, pp. 295-303.
LAGES, E. N. and MARQUES, S. P. C. Thermoelastic homogenization of periodic composites using an eigenstrain-based micromechanical model. Applied Mathematical Modelling. 2020, Vol. 85, pp. 1-18.
LEE, SANGRYUN, et al. A micromechanics-based analytical solution for the effective thermal conductivity of composites with orthotropic matrices and interfacial thermal resistance. Sci Rep. 2018, 7266.
LEVIN, V. M. On the coefficients of thermal expansion of heterogeneous materials. Mech. Solids 2. 1967, pp. 58–61.
HONÓRIO, T., BARY, B. and BENBOUDJEMA, F. Thermal properties of cement-based materials: Multiscale estimations at early-age. Cement and Concrete Composites. 2018, Vol. 87, pp. 205-209.
MCLAUGHLIN, R. A study of the differential scheme for composite materials. International Journal of Engineering Science. 4, 1977, Vol. 15, pp. 237-244.
METHA, P. K. and MONTEIRO, P. J. M. Concrete: Microstructure, Properties, and Materials, nd ed. São Paulo : IBRACON, 2014.
MILED, K., SAB, K. and LE ROY, R. Particle size effect on EPS lightweight concrete compressive strength: Experimental investigation and modelling. Mechanics of Materials. 2007, Vol. 39, pp. 222–240.
MORI, T. AND TANAKA, K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta metallurgica. 1973, Vol. 21, pp. 571-574.
NEMAT-NASSER, S. and HORI, M. Double-inclusion model and overall moduli of multi-phase composites. [ed.] 3. 1993, Mechanics of Materials, p. 14.
QUANG, H. LE, HE, Q.-C. AND BONNET, G. Eshelby's tensor fields and effective conductivity of composites made of anisotropic phases with Kapitza's interface thermal resistance. Philosophical Magazine. Feb 2011, Vol. 91, pp. 3358–3392.14 Educte, Brasil, Maceió, ISSN XXXX-XXXX, v. XX, nº xx, ano xx, p. x a x.
REAL, SOFIA, et al. Thermal conductivity of structural lightweight aggregate concrete. Magazine of Concrete Research. 2016, Vol. 68, 15x, pp. 798-808.
SAYADI, ALI A., et al. Effects of expanded polystyrene (EPS) particles on fire resistance,thermal conductivity and compressive strength of foamed concrete. Construction and Building Materials. 2016, Vol. 112, pp. 716-724.
SHARMA, M. and BISHNOI, S. Influence of properties of interfacial transition zone on elastic modulus of concrete: Evidence from micromechanical modelling. Construction and Building Materials. 2020, Vol. 246, pp. 118-138.
SHE, WEI, et al. Numerical study on the effect of pore shapes on the thermal behaviors of cellular concrete. Construction and Building Materials. 2018, Vol. 163, pp. 113–121.
UYGUNOGLU, T. and TOPÇU, I. B. Thermal expansion of self-consolidating normal and lightweight aggregate concrete at elevated temperature. Construction and Building Materials. 209, Vol. 23, pp. 3063-3069.
XU, YI, et al. Experimental study and modeling on effective thermal conductivity of EPS lightweight concrete. Journal of Thermal Science and Technology. 2, 2016, Vol. 11.
WEI, SHE, et al. Characterization and simulation of microstructure and thermal properties of foamed concrete. Construction and Building Materials. 2013, Vol. 47, pp. 1278-1291.
Withers and J., P. Elastic and Thermoelastic Properties of Brittle Matrix Composites.
ZHOU, C., SHU, X. and HUANG, B. Predicting concrete coefficient of thermal expansion with an improved micromechanical model. Construction and Building Materials. 2014, Vol. 68, pp. 10-16.
ASADI, IMAN, et al. Thermal conductivity of concrete – A review. Journal of Building Engineering. 2018, pp. 81-93.Comprehensive Composite Materials. 2000, Vol. 4, pp. 25–45.
BENVENISTE, Y. A new approach to the application of Mori-Tanaka's theory in composite materials. ”Mechanics of materials. 2, 1987, Vol. 6, pp. 147-157.
CHEKAOUI, M and QU, J. Fundamentals of micromechanics of solids. New Jersey : John Wiley & Sons, 2006.
CHRISTENSEN, R. M. and LO, K. H. Solutions for effective shear properties in three phase sphere and cylinder models. Journal of the Mechanics and Physics of Solids. 4, Apr. 1979, Vol. 27, pp. 315-330.
ESHELBY, J. D. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the royal society of London. Series A. Mathematical and physical sciences. 1226, 1957., Vol. 241, pp. 376-396.
HATTA, H. and TAYA, M. Equivalent inclusion method fot steady state heat conduction in composites. 7, 1986, Int. J. Eng.Sci., Vol. 24, pp. 1159-1172.
13 Educte, Brasil, Maceió, ISSN XXXX-XXXX, v. XX, nº xx, ano xx, p. x a x.
LI, YAQIANG, LI, YUE and WANG, R. Quantitative evaluation of elastic modulus of concrete with nanoidentation and homogenization method. Construction and Building Materials. Apr 2019., Vol. 212, pp. 295-303.
LAGES, E. N. and MARQUES, S. P. C. Thermoelastic homogenization of periodic composites using an eigenstrain-based micromechanical model. Applied Mathematical Modelling. 2020, Vol. 85, pp. 1-18.
LEE, SANGRYUN, et al. A micromechanics-based analytical solution for the effective thermal conductivity of composites with orthotropic matrices and interfacial thermal resistance. Sci Rep. 2018, 7266.
LEVIN, V. M. On the coefficients of thermal expansion of heterogeneous materials. Mech. Solids 2. 1967, pp. 58–61.
HONÓRIO, T., BARY, B. and BENBOUDJEMA, F. Thermal properties of cement-based materials: Multiscale estimations at early-age. Cement and Concrete Composites. 2018, Vol. 87, pp. 205-209.
MCLAUGHLIN, R. A study of the differential scheme for composite materials. International Journal of Engineering Science. 4, 1977, Vol. 15, pp. 237-244.
METHA, P. K. and MONTEIRO, P. J. M. Concrete: Microstructure, Properties, and Materials, nd ed. São Paulo : IBRACON, 2014.
MILED, K., SAB, K. and LE ROY, R. Particle size effect on EPS lightweight concrete compressive strength: Experimental investigation and modelling. Mechanics of Materials. 2007, Vol. 39, pp. 222–240.
MORI, T. AND TANAKA, K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta metallurgica. 1973, Vol. 21, pp. 571-574.
NEMAT-NASSER, S. and HORI, M. Double-inclusion model and overall moduli of multi-phase composites. [ed.] 3. 1993, Mechanics of Materials, p. 14.
QUANG, H. LE, HE, Q.-C. AND BONNET, G. Eshelby's tensor fields and effective conductivity of composites made of anisotropic phases with Kapitza's interface thermal resistance. Philosophical Magazine. Feb 2011, Vol. 91, pp. 3358–3392.14 Educte, Brasil, Maceió, ISSN XXXX-XXXX, v. XX, nº xx, ano xx, p. x a x.
REAL, SOFIA, et al. Thermal conductivity of structural lightweight aggregate concrete. Magazine of Concrete Research. 2016, Vol. 68, 15x, pp. 798-808.
SAYADI, ALI A., et al. Effects of expanded polystyrene (EPS) particles on fire resistance,thermal conductivity and compressive strength of foamed concrete. Construction and Building Materials. 2016, Vol. 112, pp. 716-724.
SHARMA, M. and BISHNOI, S. Influence of properties of interfacial transition zone on elastic modulus of concrete: Evidence from micromechanical modelling. Construction and Building Materials. 2020, Vol. 246, pp. 118-138.
SHE, WEI, et al. Numerical study on the effect of pore shapes on the thermal behaviors of cellular concrete. Construction and Building Materials. 2018, Vol. 163, pp. 113–121.
UYGUNOGLU, T. and TOPÇU, I. B. Thermal expansion of self-consolidating normal and lightweight aggregate concrete at elevated temperature. Construction and Building Materials. 209, Vol. 23, pp. 3063-3069.
XU, YI, et al. Experimental study and modeling on effective thermal conductivity of EPS lightweight concrete. Journal of Thermal Science and Technology. 2, 2016, Vol. 11.
WEI, SHE, et al. Characterization and simulation of microstructure and thermal properties of foamed concrete. Construction and Building Materials. 2013, Vol. 47, pp. 1278-1291.
Withers and J., P. Elastic and Thermoelastic Properties of Brittle Matrix Composites.
ZHOU, C., SHU, X. and HUANG, B. Predicting concrete coefficient of thermal expansion with an improved micromechanical model. Construction and Building Materials. 2014, Vol. 68, pp. 10-16.
Publicado
2024-01-18
Como Citar
Sarmento, R. M., & Barbosa Moreira Cedrim, M. (2024). Thermal homogenization of lightweight concrete using mean field micromechanical models. EDUCTE: Revista Científica Do Instituto Federal De Alagoas, 15, 4-17. Recuperado de https://periodicos.ifal.edu.br/educte/article/view/2060
Edição
Seção
Artigos